skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "PANAGIOTOPOULOS, ARISTOTELIS"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functorson the category of locally compact separable metric spaces each factor into (i) what we term theirdefinable version, a functortaking values in the category$$\mathsf {GPC}$$ofgroups with a Polish cover(a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from$$\mathsf {GPC}$$to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes ofd-spheres ord-tori for any$$d\geq 1$$, and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functorsto show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement$$S^3\backslash \Sigma $$to the$$2$$-sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functorsadmit two main formulations: a more combinatorial one and a more homotopical formulation as the group$$[X,P]$$of homotopy classes of maps fromXto a polyhedral$$K(G,n)$$spaceP. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space$$\mathrm {Map}(X,P)$$in terms of its subset ofphantom maps; relatedly, we provide a topological characterization of this set for any locally compact Polish spaceXand polyhedronP. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces$$\mathrm {Map}(X,P)$$, a relation which, together with the more combinatorial incarnation of, embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that ifPis a polyhedralH-group, then this relation is both Borel and idealistic. In consequence,$$[X,P]$$falls in the category ofdefinable groups, an extension of the category$$\mathsf {GPC}$$introduced herein for its regularity properties, which facilitate several of the aforementioned computations. 
    more » « less
  2. Abstract It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable. 
    more » « less